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ABSTRACT
Virtual Machines (VM) tend to evolve over their life cycle with
features being added regularly and a growing footprint. In a VM
designed for resource constrained environments this trend deteri-
orates the VM’s primary quality. We present how extensibility is
implemented in the Ribbit Scheme VM that is both compact and
portable to multiple languages. Our approach adds annotations to
the VM’s source code allowing the compiler to generate the source
code of a specialized VM extended with user-defined primitives and
with needless ones removed. This gives the best of both worlds: an
extensible VM packed with all and only the features needed by the
source code, while maintaining a small code footprint.
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1 INTRODUCTION
There are many aspects that must be considered when designing
and implementing a Virtual Machine (VM). Some of the most im-
portant are the portability of the VM implementation, the memory
footprint for code and data, the code execution speed, and fea-
ture fullness. Our work targets resource constrained environments
where the code size must be minimized, and also VM embedding in
other software. Situations where this is relevant are:

• extending existing software with scripting support
• microcontrollers with small code memory [1]
• space-limited OS boot sectors and firmware
• mobile code where the code’s transmission time must be
minimized, such as web apps for mobile phones on slow
networks, firmware updates on IoT devices [7] or a Mars
rover needing code updates from Earth
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In previous work we have designed and implemented the Ribbit
VM (RVM) , a portable and lightweight implementation of a subset
of the Scheme programming language [8]. The system supports
features such as tail calls, closures, continuations and incremen-
tal compilation. In other VM work, portability is defined as the
ability to take the VM implementation written in some host lan-
guage (typically a system language like C/C++) and to compile
it on multiple platforms (machines and operating systems). The
RVM’s portability is at a higher level; it can be ported easily to
other host languages and we have done so for Assembly (x86), C,
Clojure, Common Lisp, Haskell, Idris, JavaScript, Julia, Lua, ML,
Prolog, Python, Scala, Scheme, Zig and even POSIX shell. This is
possible because of the RVM’s small size: typically only 200-400
lines of code, depending on the language, and some additional lines
of code for a garbage collector when the host language does not
manage memory automatically, such as C and POSIX shell. It is
typically a few days of work to port the RVM to a new language
by translating an existing implementation by hand. Thanks to the
small size and multiple existing implementations, the barrier to
entry is very low for end-programmers, making the RVM attractive
to add scripting support to any software, regardless of the language
it is written in. This allows for easy integration of the VM, as it
utilizes a single memory management system and represents its
objects using the same language as the embedding software.

As with any VM development, there has been a desire to extend
Ribbit and the RVM with new features: more complete support
of the Scheme language (rest parameters, file I/O, floating point,
bignums, ...), addition of new primitive procedures to improve exe-
cution speed, addition of a Foreign Function Interface (FFI), better
debugging support, etc. Unfortunately, any extension increases the
footprint of the RVM and this slowly deteriorates the main quality
of the RVM, making it less portable and attractive.

Ribbit aims to be a lightweight implementation of Scheme that
requires little effort by an end-programmer to adapt to specific
tasks. The system can be extended at different levels (the VM itself,
the compiler, the runtime library, and the source program) and we
want this to be feasible for an end-programmer without having
to understand all the inner workings of the system as well as pro-
grammers earlier in the supply chain such as library and tooling
creators.

In this paper we explain how Ribbit and the RVM have been
made extensible without jeopardizing its small footprint. The basic
idea is to specialize the RVM to the source program that is being
compiled. In other words, parts of the VM are removed if they
are not required by the program and new parts are added to the
VM for extensions specific to the source program. Not only does
this offer the best of both worlds (small size and feature fullness),
in some situations the footprint is smaller than the original RVM
implementation.
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We start with an overview of Ribbit’s original architecture and
then explain how it was modified for extensibility.

2 RIBBIT
Ribbit’s central component is the Ribbit Scheme compiler (rsc),
an Ahead Of Time (AOT) moderately optimizing compiler that
generates code executed by the targeted RVM implementation (in
the host language selected at compile-time). The source program
and runtime library are combined and compiled as one unit. This
allows the compiler to analyze the whole code and determine the
procedure definitions that are dead and that can be eliminated from
the generated RVM code. The RVM code is then converted to a
compact string representation. The compaction algorithm takes
into account the static frequency of the operations in the program
to encode frequent operations using fewer characters, typically one
character per RVM operation. This string is then embedded into
the target RVM implementation as a string literal. When the RVM
starts executing, it will use this string to build in the main heap a
symbol table (see below) and a more convenient representation of
the code as a linked graph of instructions.

Although Ribbit implements a subset of the Scheme language, it
is still quite powerful. Indeed the rsc AOT compiler is itself written
in this subset of Scheme so it can bootstrap itself. Consequently
both rsc and programs compiled by rsc are portable in the sense
of our high-level portability.

The runtime library notably includes the procedures read, write,
and eval which are the basis for implementing a Read-Eval-Print-
Loop (REPL) at the console. This means that a compact Scheme
interpreter can be created by compiling a simple Scheme program
with rsc. For example, the interpreter’s total footprint is less than
4K bytes with the JavaScript RVM. Moreover a Scheme program
compiled with rsc can easily include a REPL functionality for run
time debugging and experimentation. The eval procedure is based
on the compile procedure that implements a non-optimizing in-
cremental compiler that converts a Scheme expression to its RVM
code wrapped in a parameterless procedure. Calling this procedure
has the effect of evaluating the expression. The generated RVM
code uses the same linked graph representation as AOT compiled
code.

For implementation simplicity Scheme’s symbol type is repre-
sented at run time as a heap allocated structure with a field con-
taining the symbol’s name (a Scheme string) and a field containing
the value of the global variable with that name (for example the +
symbol has the Scheme addition procedure in its global variable
field). A symbol table must be maintained at run time to implement
the string->symbol procedure in order to create only one symbol
and global variable with a given name. In many programs, space
can be saved by not maintaining a symbol table (which is simply a
list of symbols) and the names of the symbols. Not only does this
save heap space at run time but it reduces the size of the generated
RVM code’s compacted string representation which contains the
names of the source program’s symbols, a saving of 25%-30% for
typical programs. This is determined during the dead code analysis.
If string->symbol is dead there is no need for a symbol table. If
in addition symbol->string is dead then there is no need to store
the symbol’s name. Note that read depends on string->symbol
and write depends on symbol->string and the REPL depends on

both. This means, for example, that a program using write but
not read will avoid the symbol table but still store the names in
symbols. To improve the space saving when both string->symbol
and symbol->string are live, such as when a REPL is used, the
programmer can add a (export sym1...) declaration to the pro-
gram. The compiler will initialize the run time symbol table with
the symbols in the list and will assume those global variables are
live. The list usually contains the global variable names that might
be referred to from the REPL, for example all the Scheme predefined
procedure names in the case of the interpreter.

3 RVM
Ribbit’s VM is designed to be compact. It is a stack machine with a
classic code interpretation loop that dispatches on the next instruc-
tion to execute. An unusual aspect of the RVM is the simplicity
of memory management: all data structures are built solely out of
fixed size cells with 3 fields, called ribs. The run time stack, RVM
code and Scheme objects are all represented using linked ribs. A
Scheme object is either an integer or a rib whose third field is an in-
teger indicating the type of object (0=pair, 1=procedure, 2=symbol,
3=string, etc).

The RVM instructions closely match Scheme’s basic constructs:
jump, call, get, set, const, and if. Procedure calls are performed
with jump (tail call) and call (non-tail call). They can call one of 20
primitive procedures that are built into the RVM, or closures created
using a lambda-expression. The get and set instructions are for
reading and writing local and global variables. These 4 instructions
contain a parameter that is either an integer indicating the location
of a local variable on the stack, or a symbol indicating a global
variable. Any other values required by the instruction are passed
on the stack. The const instruction pushes to the stack the data
that is in the instruction. The if instruction pops a value from the
stack and follows one of two paths depending on whether the value
is false or not.

Ribbit’s functionality is mainly defined by the set of primitive
procedures. The 20 primitives support basic operations: rib, rib?,
field[0/1/2], field[0/1/2]-set!, eqv?, <, +, -, *, quotient,
getchar, putchar, id, arg1, arg2, and close. These primitives
were carefully chosen to allow the definition of more complex
Scheme procedures in the runtime library. For example, the prim-
itive procedure rib constructs a rib from the value of its 3 fields,
and the primitive procedures field0, field1, and field2 extract
each of those fields from a rib. A Scheme pair is represented with a
rib whose first two fields contain the first (car) and second (cdr)
field of the pair. Consequently the Scheme procedures cons, car,
cdr, and pair? are defined in the runtime library as:

(define (cons car cdr) (rib car cdr 0)) ;; 0 = pair type
(define (car pair) (field0 pair))
(define (cdr pair) (field1 pair))
(define (pair? x) (and (rib? x) (eqv? 0 (field2 x))))

The primitive id (identity) eliminates the need for a return instruc-
tion since a tail call to id has the same effect. The primitive arg1
has the same effect as a pop instruction to discard unneeded results
(for Scheme’s begin sequential execution construct). The primitive
close, which captures the stack to create a closure, is also used for
implementing the call/cc procedure which also needs to capture
the stack.
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4 EXTENSIBILITY
To make Ribbit extensible we exploit the fact that the compiler
takes a source program and generates the source code of a RVM
that embeds the RVM code generated for the program. It is nat-
ural to extend this model to make deeper changes to the source
code of the RVM when new functionality is needed by the source
program. Providing low-level interfaces is critical to an extensible
VM, as it widens the range of uses and allows application-specific
optimizations [6].

Adding primitives to the RVM is a natural place to start. These
primitives could be added directly to the RVM’s source code, like
would be required in typical VMs, but we also want to allow end-
programmers less knowledgeable in the system’s inner workings
to do this. We added support to rsc for a define-primitive con-
struct that can appear in the source program or the runtime library.
It defines a new RVM primitive procedure with a name and a string
containing the implementation in the RVM’s source code. For ex-
ample, a square primitive could be added to the Python RVM with:
(define-primitive (square x) ;; only name matters

"lambda: push(pop()**2)") ;; Python code added to RVM

If rsc determines that square is live, an index will be assigned to
that primitive, say 20, and the define-primitive will be replaced
with the creation of a primitive procedure:
(define square (rib 20 0 1)) ;; 1 = procedure type

Which assigns to square a procedure represented as a rib. The
compiler will also modify the primitive procedure dispatch logic of
the RVM to handle index 20 by executing the code specified in the
define-primitive construct. This serves as a simple FFI/intrinsic
mechanism, with the advantage that there is very little overhead
for calling extensions.

Generating a specialized VM also allows removing from the
RVM source code all primitives that are determined dead by rsc.
For example, the getchar primitive could be removed when the
program does not read input, the close primitive could be removed
when no closures are created, etc.

The host code in define-primitive constructs is usually spe-
cific to one host language. We added to the cond-expand condi-
tional expansion construct a test so that the host can be taken into
account at compile-time. A primitive can have one implementation
for each relevant host language like this:
(cond-expand ((host py) ;; Python host

(define-primitive (square x)
"lambda: push(pop()**2)"))

((host c) ;; C host
(define-primitive (square x)

"{ int x = pop(); push(x*x); }")))

This is convenient to modularly extend domain-specific run-
time libraries with interfaces to services that exist in multiple host
languages (access to filesystems and databases, fetching web docu-
ments, cryptographic hashing, etc).

Since the beginning of the project, the RVM’s source code for
each host has been a self-standing file, including a predefined hello
world RVM code string. This allows most of the development of
a new RVM to be done with the usual developer tools and code
editors without requiring the execution of rsc. This is a valuable
quality that we want to preserve. In addition the RVM’s source code

must be modifiable by rsc without having to embed knowledge
of the host language in rsc which would make it harder to port
to new host languages. For that reason our approach is based on
annotating the RVM source code. These annotations are parsed by
rsc to determine how the RVM’s source code needs to be modified.
To avoid including a parser for every host language in rsc, these
annotations are placed in host language comments and have the
easy-to-find marker @@(...)@@ and a Lispy syntax.

The @@( token indicates the start of an annotation, followed by
a name and optional parameters on the same line. If the annotation
ends on the same line with a )@@ token, then this annotation refers
to code on this line (see the example below). If it ends later on, the
annotation refers to everything after the starting line, until and
including the line containing the matching closing bracket )@@.
Note that annotations can embed other annotations, for example,
the primitives (plural) annotation indicates the section of code
containing all the primitives. Inside it, primitive (singular) anno-
tations indicate the location of a specific primitive. For languages
like Pascal that require a comment-ending token, we can use @@ to
halt annotation parsing early.

For code generation the annotations inform rsc about the host
syntax, in particular for RVM code string literals and the primi-
tive dispatch logic code (switch statement, array of procedures,
etc). For maximum flexibility annotations can embed Scheme code
generating host code as a string.

Multiple sections of RVM source code may be needed to im-
plement specific features. For example, to implement the getchar
primitive the C RVM needs a #include <stdio.h> at the top, an
auxiliary C function that calls the C getchar, and code in the prim-
itive dispatch logic. Moreover the putchar primitive also depends
on #include <stdio.h>. For this reason features are named and
annotations can express dependencies between the sections of RVM
source code. Here is the C RVM’s implementation of the putchar
primitive:
#include <stdio.h> // @@(feature stdio)@@

...

switch (prim_index) {

// @@(primitives (gen "case " index ":" body)

...

case 19: // @@(primitive (putchar c) (use stdio)

putchar(tos()); break; // print top of stack

// )@@

...

// )@@

}

The gen argument of the primitives form instructs rsc on how
to generate a single primitive. It includes a template employing
special variables like index and body. The index represents the
dispatch number of the primitive, while body is the code enclosed
by the primitive annotation. In this context, we notify rsc that
for the C host, primitives need to be wrapped in a case statement.
The use form declares dependencies between the current primitive
and features, in this case, the stdio feature.

Like the define-primitive form, the define-feature form
allows programs to define new features. For instance, consider a
primitive that’s designed to write a string to the console. It would
need a conversion function that translates RVM strings into host
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language strings, which can also be beneficial for other primitives.
Below is an example of how this could be implemented in the
JavaScript RVM:
(define-feature rvm-to-host-string

(decl "function rvm2host_string(s) { ... }"))

(define-primitive (write-string s)
(uses rvm-to-host-string)
"console.log(rvm2host_string(pop())); push(FALSE);")

In the define-feature construct, the decl symbol preceding
the JavaScript function definition is used to denote the location in
the RVM source code where the feature should be inserted. The
need for a locationmarker arises because definitions can be location-
specific within host languages. Named locations are indicated in
the source code with : @@(location <location-name>)@@.

A @@(replace <string> <replacement>)@@ annotation is also
available to replace a string in the RVM source code with another
string. This is mainly used to replace the default hello world RVM
code string with the RVM encoded program. This is how the anno-
tation is used inside the Python host:
# @@(replace ");'u?>vD?>v ... lkv6y" (encode 92)
input=");'u?>vD?>v ... lkv6y"
# )@@

Our goal is to encode the program in the fewest bytes possible,
and doing so is dependent on the host language. Some languages
(like x86) allow strings of arbitrary bytes. Conversely, in languages
like JavaScript, encoding bytes within a vector would not be the
most efficient approach, as each byte would be encoded with up to
four characters. The (encode 92) argument instructs the compiler
to encode the string using a safe set of 92 ASCII characters, but the
RVM implementation can ultimately decide which is best. Future
extensions could offer a variety of options for finer control of the
encoding.

Lastly, the option to enable or disable features during the compila-
tion process is provided through the command line. This empowers
the programmer to exercise control over the elements included in
the host RVM, and ultimately, in the final program. For instance, the
arity-check feature directs the compiler to validate the number of
arguments prior to each call. This requires rsc to push the number
of arguments before each call, which might result in a slightly less
efficient code with a larger footprint. Despite this, it is advantageous
for debugging purposes. Further, feature options might encompass
adding or removing the garbage collector, or making host-specific
modifications such as distinguishing between a Node.js and a web
target on the JavaScript host. Our feature system possesses the
adaptability to accommodate all these scenarios.
5 RELATEDWORK
Jupiter is a Java Virtual Machine (JVM) that aims flexibility through
software design choices [4]. New extensions can be easily written by
extending existing classes and interfaces. However, the VM needs
to be modified to do so. It doesn’t offer dynamic primitive creation,
and it is unclear if this is even possible given the JVM context.

Benzo is a framework for low-level programming [2] at a high-
level of abstraction. It allows dynamic modifications of components,
like our annotation system. It does this through a FFI similar to
define-primitive. However, Benzo is not a VM, it runs on a single

host language, and it doesn’t have a liveness analysis or target
resource constrained systems.

Maté is a VM with a similar code size as Ribbit [7]. It targets
sensor networks and offers on-the-go network capabilities with ab-
stractions for simplifying the writing of asynchronous applications.
In terms of extensibility, eight instructions have been reserved for
users to define. Ribbit’s annotation system has no such limitation
and through primitives it could define powerful network abstrac-
tions as well.

The VM generation tools vmgen[5] and Tiger[3] can generate
and specialize a C implementation of a VM with the main goal to
improve the execution speed. They analyze and profile the VM code
to extract superinstructions, specialized instructions, and speed-
related optimizations. The speed improvement of the VM code
interpreter comes at the cost of a larger VM. In Ribbit, we are con-
cerned with the VM’s size and portability across host languages.
Our approach modifies VM implementations without any knowl-
edge of the host language syntax through the use of annotations in
comments, making it portable and modular.

6 CONCLUSION
In this paper, we showcased an annotation language to allow spe-
cializing a portable VM to the needs of the program. Extensions
are expressed in the source program and the code of standard fea-
tures is labelled in the VM’s source code. This allows the compiler’s
dead code analysis to be applied to the whole program including
runtime library and VM’s source code. The system’s extensibility
does not compromise the size of the final executable because it
contains only the needed parts. In future work we think it will be
interesting to explore how to allow more global properties of the
VM to be deactivated/activated, such as support for tail calls, first
class continuations, threads, etc. It will also be interesting to see if
this allows a complete implementation of RnRS Scheme to fit in a
small code memory for typical programs.
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