

Training Genetic Neural Networks Algorithms
for Autonomous Cars with the LAOP Platform

 Jihene REZGUI‡, Léonard OEST O’LEARY‡, Clément BISAILLON‡, Lamia CHAARI

FOURATI†
‡ Laboratoire Recherche Informatique Maisonneuve (LRIMa), Montreal, Canada

† Laboratory of Technology and Smart Systems (LT2S), University of Sfax, Tunisia
Digital Research Center of Sfax (CRNS)

jrezgui@cmaisonneuve.qc.ca lamiachaari1@gmail.com leonard.oest.oleary@gmail.com

Abstract- The challenge with self-driving cars is
to create a model that converts sensors data (such as
cameras or proximity sensors) into actions. This way
the car can react to its changing environment and
make the right decisions. In the literature, Neural
Networks is the most promising technique used to
parse these sensors data. A well trained and designed
neural network can take the sensors values and output
the right actions. In this paper, we introduce a Way to
train Efficiently Neural Network with Genetic
principle, called WENNG. Moreover, we propose a
comparative study between all the variations of
WENNG to highlight the best-performing ones. To
evaluate our WENNG training variation, we
implement two well known neural network
algorithms: the FullyConnected one and the NEAT
algorithm. Through extensive simulations, we
demonstrate that the Natural Selection WENNG
outperforms the Greedy WENNG at training the
genetic neural networks with a low mutation rate.
Finally, we show that an IMproved version of NEAT
called IMNEAT, minimizes twice the number of
generations to reach the maximum fitness value
compared to the traditional NEAT algorithm.

Keywords: Neural networks, evolution,

autonomous cars, natural selection, FullyConnected,
learning algorithm;

I. Introduction
Nowadays, autonomous vehicles (AV) gain a great

focus from civilians, automotive constructors and
transportation stakeholders. Accordingly, AV, Internet of
vehicles, and the connected smart cars will be the main
actors of smart transportation system within smart cities.
AV could be better at preventing accidents than humans,
since they can react faster to disturbance and they can do
precise evasive maneuvers. AVs make more reliable
decisions which lead to faults avoidance that could cause
accidents. Besides that, AVs will get better traffic flow
regulation than humans because AV ride using proper
traffic rules, making smooth and congestion free traffic.
The AV basic model involves front-facing cameras, rear
cameras, radar, digitally controlled sub-systems,
long-range ultrasonic sensors located around the car and
many sensors and actuators embedded within the vehicle
as well as intra-vehicles and inter-vehicles networks [2].

All these sensors will gather in real-time the required
data concerning the vehicles environment which are
fused into a learning network predicting the vehicle’s
response. However, autonomous vehicle faces diverse
challenges before its standardisation. In this context,
Intelligence artificial is the key paradigm that will enable
the researchers, engineers and developers to build safe
AV. Therefore, a huge effort is required to find the better
ways to make the machine learn to drive safely and
efficiently. Now, the most reliable way to achieve
artificial intelligence in computing is to use various
known algorithms as artificial neural networks. Multiple
challenges arise with those kind of algorithms. For
example, in order to train the neural networks we need to
simulate cars in an environment that is as close as
possible to the real world in order to be able to transfer
the algorithm to a real car when it is done learning.
Another problem with this approach is that there are
multiple variations of the artificial neural network
algorithm each tested using different techniques. In our
previous work, we proposed a platform called LAOP [3]
to easily compare different neural network algorithms in
the context of autonomous cars. Using our platform,
scientists can collect comparative data between multiple
neural network algorithms to drive cars. Note here that
we are differencing the Artificial Neural Network (ANN)
from the learning algorithm. The learning algorithm is
the one that will perform the optimisation on the ANN
(for example, the backpropagation algorithm is a learning
algorithm). Using the LAOP platform, we compare
different variation of a genetic learning algorithm that we
called WENNG on two well known algorithms : NEAT
[5] and FUlly COnnected Neural Network (FUCONN).

Our contributions can be summarized as follows: (1)

We present the global working of our Way to train
Efficiently Neural Network with Genetic principle named
WENNG and its implementation in the LAOP platform
[4]; (2) We introduce the two variations of WENNG
:Natural Selection named NS WENNG and GReeDy
WENNG named GRD WENNG; (3) We implement two
neural networks algorithms : NEAT and a FUCONN to
evaluate the performance of WENNG and its
variation;(4) We discuss our comparative study using all
the WENNG variations to train NEAT and FUCONN
respectively and (5) We demonstrate that the Natural

Selection WENNG outperforms the GRD WENNG with
a low mutation rate while the IMNEAT algorithm
outperforms the known NEAT algorithm.

Section II provides a brief overview of the related
work and compares them to our proposed scheme
WENNG. In section III, we briefly explain how our
LAOP[4] platform works. In section IV, we present how
we implemented some well known algorithms to test
WENNG on it. Section V shows the simulations results.
Finally, conclusions are drawn in Section VI.

II. Related work
Several schemes training neural networks have been

proposed to handle self-driving cars challenge. To the
best to our knowledge, these can be broadly classified in
two categories: (a) supervised learning [6,7,10] and (b)
reinforcement learning [1,5,8-9,11].

a. Neural networks trained with supervised
learning
Dean A. Pomerleau [7] was one of the first to use

supervised learning in autonomous driving. He proposed
to train a fully connected neural network to predict
steering wheels angles depending on road images. As he
did not have access to a dataset containing steering wheels
angles, he trained his neural network in a simulated
environment. The authors in [6,10] used a Convolutional
Neural Network (CNN) to predict steering wheels angles
from raw images with great success. They used a dataset
from images and steering wheels to train their neural
network.

b.Neural Networks trained with reinforcement
learning

Reinforcement learning has made their proof in
solving multiple optimization problems, notably in
games. This technique was used by DeepMind [8] to beat
the best go player in the world. It was also used by
OpenAI [9] to learn a bot to play dota 2.

There is a lot of techniques used to train neural
networks such as Q-Learning [11] and its variants, but in
this paper we concentrated ourselves on genetic
reinforcement learning. In NEAT[5], the authors showed
that a genetic algorithm can solve the pole-balancing
problem with better results then the ones availables in
that time. Recently, their research study, in [12], showed
that genetic algorithms can be very performant even in
hard optimization tasks.

c. Using a genetic reinforcement learning: What
is the advantage compared to both categories?

To train the algorithms, in our paper, we use a genetic
reinforcement technique that we called WENNG. The
advantage of a reinforcement learning approaches
[1,5,8-9,11] is that less data is required to train the
network. Supervised technique [6-7, 10] needs to have a
set of good outputs for each time the network is used. In
our case, this means that for each step of the simulation,
we would need to tell the network what it should be the
output. The problem is that there can be multiple
manoeuvers to get to the finishing line and forcing a

predefined path may not be the best way to make it
learns. We also want to explore what are the capabilities
of a neural network without explicitly telling him what is
the right path to take. A reinforcement learning approach
only needs reward function that tells how the neural
network is performing. With this information, it can
favorise the best-performing ones and eventually find a
good neural network.

III. An overview of the improved LAOP
platform enforced by new algorithms

This section will briefly describe LAOP. We introduced
a preliminary version of this platform in details in our
previous work [3]. The source code of the new
implementation of LAOP platform is available in [4].
LAOP [3,4] is a platform made to compare and develop

better artificial intelligence algorithms in the context of
autonomous vehicles. It can simulate and train a neural
network algorithm. It can then provide comparison data
between the algorithms tested. This section is divided as
following : we first describe how we implemented the car
into the platform and then we describe how we divided
the process of generations.

 A. The car

Figure.1. A car with its different parts. The sensors give
information to the neural network that can dictates the
values of the wheels.

The cars navigate through a simulated environment.
This environnement is composed of two parts : (1) walls
and (2) a starting position. The starting position is the
point where the cars will spawn at the start of the
generation. The walls are lines that the car must avoid. If
the car comes in contact with one of these, its state is
changed to eliminated, and it can no longer move.
A car is composed of three key parts : the sensors, the

neural network and the wheels as shown in Figure.1. The
sensors track information about the environment and
transfer that data to the neural network. At the moment,
only proximity sensors are implemented. They can tell
the distance between the car and the walls surrounding it
in a straight line. After receiving the data from the
sensors, the neural network will do a calculation
depending on its implementation and will assign a value
to each of the two back wheels. The wheels then go at a

certain speed depending on the values returned from the
neural network.

. B. The simulation
At the launch of the platform, the user can configure the

simulation and select which algorithms that are going to
be simulated. The user can also set specific settings to
each algorithm. Therefore, the user can compare multiple
variation of the same algorithm to gain valuable insight.
As shown in [4], our LAOP platform can be useful for
example to know the effect that the car density has on the
learning process of an algorithm.
The simulation process can be described as follow: for

each algorithm, a simulation batch is created; the
simulation batch will simulate the same algorithm
multiple time to reduce the error related to chance ; the
simulation will play one generation after the other in
order to make the cars learn. A generation contains a set
of cars and it’s the process of simulating all the cars. At
the beginning of the generation, the cars are spawned at
the starting location. For each car, the value of the
sensors are fed in the neural network to get the value that
each wheel should go. The new position of the car is then
computed. This iteration continues until one of those
conditions are met : (1) all the cars are eliminated,
meaning they all hit a wall or (2) the time limit specified
in the simulation settings is reached (this parameter is set
to 60 seconds in our scenarios). When the generation
ends, the cars go through the training algorithm WENNG
to hopefully optimize the neural networks of the next
generation.

III. WENNG, a Way to train Efficiently Neural
Networks using Genetics

Our WENNG scheme uses three phases to make the set
of car learn: (1) the evaluation, (2) the selection and (3)
the repopulation as shown in Figure.2. The evaluation is
done at the end of each generation, and it is the process
of assigning a value to each car depending on their
performance during the simulation. The selection is the
process of eliminating the worst car depending on their
fitness value. The repopulation is the process of
repopulating the set of cars. After these three phases, a
new generation is created with this new set of cars.

In the following part, we present two variations of
WENNG : a Natural Selection Way of training
Efficiently Neural Network using Genetics (NS
WENNG) and a greedy WENNG (GRD WENNG). We
will first present the way the cars are evaluated. This
process is the same for the two algorithms. Then, we will
present each of the algorithms independently.

Figure. 2. The process of simulating consist of three phases:
the evaluation, the selection and the repopulation.

A. The fitness function
During the simulation, we collect information about

the cars. With this information a value is assigned to each
car, called the fitness, that determines how good the car
performed during the generation. Our implementation of
the function that computes the fitness is the one displayed
in (1).

 xf = d + (1)

Where is the fitness of the car, is the maximum f d
distance from the start the car went in pixels and x is the
total distance traveled by the car, also in pixels. The
reason why we chose this function over f=x is explained
in [3].
B. Natural selection WENNG

After the attribution of the fitnesses, NS WENNG
uses a weighted random distribution algorithm to
eliminate the worst performing cars. This distribution
favorises the cars with the best fitness by giving them a
better weight then the others. Depending on this weight,
half the population is eliminated. With this method, even
the best-performing cars still have a chance to be
eliminated. This respect the principles of natural
selection. Even a well adapt specie still has a chance to
die. More details about the implementation of the
weighted sum is available in [3] .

After the elimination process, the algorithm must

repopulate the missing cars for the next generation. Each
neural network algorithm (like NEAT or FUCONN) must
redefine a function called crossOver(). This function
takes as inputs two neural network and returns one. The
returned neural network must have similar properties then
the two passed in parameters. NS WENNG then takes
two random parents from the surviving set of cars and
parse them into the function to create a new neural
network. A new car with this newly created neural
network will be put in the set. This will be done for each
of the missing car in the set. Then mutations are applied
randomly on the cars’s network.

C. Greedy WENNG (GRD WENNG)

The greedy WENNG algorithm uses a much simpler
approach to select the cars. It kills 80% of the worst

performing cars. Then, the algorithm puts the 10% best
performing neural network in an array that will be kept
for all the simulations. This array is used in the
repopulation phase.

To repopulate the set, GRD WENNG first creates a
sub-array containing the 20 best cars of this array. Then,
for each missing car, it picks 2 random cars in the
sub-array and reproduce them with the crossOver()
function to create new cars. All the newly generate cars
are forced to be mutated. The 20% that stayed in the
array isn’t mutated.

IV. Proposed algorithms

We implemented a few learning algorithms in the
platform to compare them with each other. In this
section, we will describe in better details how our
algorithms are implemented. We propose two learning
algorithms : a fully connected neural network with some
genetic and the NEAT algorithm proposed by Kenneth O.
Stanley and Risto Miikkulainen [5]. In this section, we
will first present some background information about
neural networks, and then we will present our
implementations of these neural networks

A. Background knowledge on neural networks

A neural network is composed of at least two layers,
the input and the output layer. Connections between
neurons, called weights, are used to link a node to
another. Each weight and neuron contains a value. The
values in the input layer are attributed by the
environnement. In this context, the number of neuron in
the first layer are the number of sensors present in the
car. Their values depend on the values of the sensors. To
compute the value at a certain neuron we do a sum of all
the multiplication between each pair of neuron and
weight. Then we apply an activation function to the
result. This function is shown in (Eq.2). And the
activation function is shown in (Eq.3). By applying the
summation function (3), we can calculate the values of
each of the neurons, going layer per layer. To get the
output of the network, we check the values of each
neurons in the last layer. In our context, the output of the
network is used to know the speed that each wheel should
goes at.

(2)

(3)

To define a neural network, we need two things: the
topology (the number of layers and the number of
neurons in each) and the value of the weights. This
means that only these two parameters are needed to
recreate the neural network, and thus the only parameters
that affect the performance of a Neural Network. A

random set of topology and weights is not going to
perform well. Once trained, meaning finding the right
weights and topology, a neural network will do a better
prediction according to its inputs. The goal of our
training algorithm is to find the best configuration with
real-time generated data.

B. The Fully Connected (FUCONN) Algorithm
The FUCONN algorithm uses a neural network with a

fixed topology, meaning that the number of layers and
the number of neurons in each layer won't change as the
simulation progress (Figure. 3). In the context of our
platform, the input neurons each receives the value of one
of the sensors. In our examples we use seven proximity
sensors per cars meaning the neural network of the car
has seven input nodes in the first layer. The two node in
the last layer, after being calculated, correspond to the
value that each wheels of the car should go. The number
of hidden layers and the number of neurons in each one
can be specified before launching the simulation. In our
examples, we demonstrate the Fully Connected
Algorithm with one hidden layer consisting of three
neurons.
To implement the neural network, we must have a way

to encode the neural network. The only parameter that
define the fully connected neural network are the
weights, as the topology is fixed. We can then represent
the neural network with an array containing all the values
of all the weight. The size of this array stays the same
during the simulation, because of the fixed topology. This
representation comes handy because we can now change
the Neural Network simply by altering the array.

Figure 3. The topology of the FUCONN algorithm

In order to improve the fully connected algorithm’s
network the WENNG algorithm need to be able to
produce a new FUCONN algorithms using two others; to
redefine the crossOver() function. Therefore, the
FUCONN algorithm needs to define what reproducing
itself means. As the encoding of this algorithm is an array
of weights, we need to find a way to merge the arrays of
the two parents. The way NS WENNG does it is by
randomly selecting the value of either one parent or the
other at each position in the genotype. When the
FUCONN is mutated, it picks a random weight and
slightly change its value.

C. The NEAT algorithm
The fully connected algorithm has a fixed topology,

meaning that it only searches solutions in its arrangement

of weights. However, the NEAT algorithm has a different
approach by making the topology of the network variable,
and thus searching in a wider range of possibilities. This
wider range can be useful to find solution that otherwise
could be hidden. The NEAT algorithm starts with only
one connection going from a random input neuron to a
random output neuron.

To be trained by the WENNG algorithms, it needs to
define the crossOver() function. To do this, creates a new
network with hidden neurons and connections from both
of its parents. This function is explained in the traditional
NEAT algorithm[5].

One of the differences with the Fully Connected
Algorithm is within the mutations possibilities. The
FUCONN algorithm can only (1) randomly changes
weights. The NEAT algorithm can also (2) add a neuron
between two already connected neurons or (3) connect
randomly two random.

C. The Improved NEAT (IMNEAT) algorithm

Figure 4. How the topology of the NEAT algorithm starts

In our demonstrations, we compare the traditional
NEAT algorithm with IMNEAT. The difference between
IMNEAT and NEAT resides in the number of starting
connections . Through extensive simulation, we found
that starting with only one random connection was not
the best way in the context of autonomous vehicles. We
noticed that it was useless to have some sensors doing
nothing at the beginning. In our context it is logical that
every sensor impact the decision of the speed of the
wheels. To improve the NEAT algorithm we added some
connections when the network is created (see Figure.4).
When IMNEAT starts, it has all its neuron connected.

V. Simulations Results
In this section, we conduct a simulation study using

the new version of the LAOP platform shared in [4] to
evaluate and compare the performance of our proposed
scheme, NS WENNG and GRD WENNG, training
NEAT and FUCONN. We then compare our improved
version of NEAT against the traditional NEAT. We
evaluate several performance metrics based on the fitness
: 1) the best car’s fitness at each generation; 2) The
average fitness at each generation 3) the rate at which the
fitness increases as the generation increased and 4) the
maximum fitness reached in the 20 generations. We recall
that a generation is the process of simulating and then
altering the set of cars. The fitness is a value assigned to
each car at the end of each generation to determine how
the car is performing.

A. Simulation Congurations
In the rst scenario (1), We ran extensive

simulations and multiple variation of the WENNG
algorithm with several parameters as shown in Table.I.

Table I. Parameters of Scenario 1 simulation
Parameter Value

Number of simulations 5

Number of generations 20

Number of sensors 7

Maximum generation time 60 seconds

Car density 50

In the second scenario (2), we run multiple
simulation of the NEAT algorithm and the IMNEAT
algorithm to find which one is performing better. All
parameters for this scenario, except number of simulation
stays the same. The number of simulation is set at 10.

B. Results Analysis
Scenario 1 : Variations of the WENNG algorithm
We present the comparison between NS WENNG

and GRD WENNG learning approaches on the NEAT
algorithm and the FUCONN algorithm.

Figure. 5. Comparison of the best performing cars of NS WENNG
vs GRD WENNG at each generation on NEAT

The Figure 5 represents a comparison of the best
performing car at each generation using the NEAT
algorithm. Here, we can see that the NS WENNG
algorithm is overperforming the GRD WENNG on the
first 12 generations. Passing the 15th generation, the NS
WENNG algorithm starts to underperform. This is
probably due to the fact that in the NS WENNG
algorithm, all the cars (even the best-performing ones)
have a chance to mutate. This is not the case in the GRD
WENNG algorithm. If a good-performing car gets
mutated, it has a chance to be less performant than before
the mutation, thus resulting in a lost of performance. This
is probably the reason why the blue line is unstable at the
end.

Figure. 6. The average fitness of NS WENNG vs. GRD WENNG
at each generation on NEAT

Figure.6 shows a comparison of the average fitness
between two algorithms. The GRD algorithm
overperforms the NS WENNG algorithm during the
whole simulations. This is surprising, because the NS
WENNG performed better then the GRD WENNG in all
the other cases. We believe that the high mutations rate of
NEAT are behind this behaviour.

Figure 7. The best fitness at each generation between the GRD and
NS WENNG using the FUCONN algorithm

In Figure. 7, the natural selection algorithm
performed better than the GRD algorithm. Overall, the
NS WENNG algorithm was faster than the GRD
algorithm to get to the maximum fitness. With the
FUCONN algorithm, it seems that the learning of the NS
WENNG was more stable compared to the NEAT
algorithm. This is probably due that the NEAT algorithm
is more affected by the mutation and the reproduction, as
it can completely change its topology. In the FUCONN
algorithm, the mutations and reproductions are only
affecting the weight’s value. This means that if a good car
is being mutated, it has less chance to completely change,
and thus less chance of becoming less performant. We
can conclude that the NS WENNG algorithm is better to
train algorithms that are not affected a lot by mutations.

Figure.8 shows a comparison of the average fitness
and the generation where the Natural Selection WENNG
able to keep the average fitness at a high level. In almost
all the cases, the NS WENNG overperforms the GRD
WENNG algorithm.

Figure. 8. The average fitness at each generation using the
FUCONN algorithm between the GRN and NS WENNG

SENARIO 2: Comparison between our IMNEAT
and the NEAT algorithm

In this scenario, we compare the IMNEAT algorithm
and the NEAT algorithm. The difference of the two
algorithms resides in the number of starting connections.
The IMNEAT algorithm starts with all nodes connected.
The NEAT algorithm starts with one connection between
two random nodes. We are comparing them on the same
four criteria explained at the start of this section.

Figure.9. The average fitness of IMNEAT vs. NEAT

Figure.10. The best-performing cars of IMNEAT vs. NEAT

As we can see in Figures 9 and 10, the IMNEAT
algorithm is starting with a head start. At generation 1 of
both the average and the maximum, the IMNEAT’s
fitness is higher than in the NEAT’s one. As the
generations progress, the NEAT algorithm catches the
IMNEAT’s. But, this is caused by the fact that the max
fitness (of ~1900) reached at generation 6 for the
IMNEAT algorithm. The traditional NEAT algorithm
gets to the maximum of ~1800 at generation 15. Our
approach of pre-assigning connections makes IMNEAT
twice as fast to react the maximum.

In summary, the simulation results conrm that
well-trained Neural Network with Genetic principle can

efciently satisfy our goal of getting a car to run without
hitting walls.

VI. Conclusion and Future works
In this paper, we have proposed two Ways of

Efficiently train Neural Networks with Genetics
(WENNG). Our first approach (NS WENNG) tries to
follows the principles of natural selection by determining
the likelihood of keeping a car alive by chance, thus
keeping a part of the less-performing population that
could have interesting traits later on. The GRD WENNG
gets rid of the less performing population and tries to
only reproduce the better performing ones. In most cases,
the NS WENNG approach gives better results. Except in
the case of the average study of the NEAT algorithm.
This exception is probably due to the fact that mutations
have a big impact on the NEAT’s best performing cars
and that the selection algorithm mutates all the car by
comparison with the GRD algorithm that only mutates
the new cars.

Furthermore, we have concluded from our
performance study that the regular NEAT enforced with
our heuristic needs less generations to be as performant as
the traditional NEAT algorithm. The fact of pre
connecting the neural network gives it a head start,
because the traditional NEAT algorithm will need to get
to this connected state anyways during its training.

ACKNOWLEDGMENT
This research was financially supported by the “Fonds

Québécois de la recherche sur la nature et les
technologies (FRQNT).” We would like to thank Barrette
Brisson, for her valuable comments.

References
[1] F. Petroski Such, et al., “Deep Neuroevolution: Genetic

Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning”, CoRR
abs/1712.06567, 2017.

[2] Hbaieb, A., Rhaiem, and Chaari, L, "In-car Gateway
Architecture for Intra and Inter-vehicular Networks", IEEE 14th
IWCMC Conference (pp. 1489-1494), 2018.

[3] J. Rezgui, C. Bisaillon and L. Oest O’Leary, "Finding
better learning algorithms for self-driving cars", IEEE ISNCC
2019 18-21 June, Turkey.

[4] LAOP by L. Oest O’Leary, C. Bisaillon and J. Rezgui on
GitHub, https://github.com/lool01/LAOP, [last visit and update
24/04/2019].

[5] K. O. Stanley and R. Miikkulainen, "Evolving Neural
Networks through Augmenting Topologies", Evolutionary
Computation Journal, 10(2):99-127, 2002.

[6] M. Bojarski et al., "End to end learning for self-driving
cars". arXiv preprint arXiv:1604.07316, 2016.

[7] D. A. Pomerleau. Alvinn, "An autonomous land vehicle in
a neural network", Technical report, Carnegie Mellon University,
Computer Science Department, 1989.

[8] D. Silver et al., "Mastering the game of Go without human
knowledge", Nature, 550, 354, 2017.

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman,
"Quantifying generalization in reinforcement learning", preprint
arXiv, Research by OpenAI, :1812.02341, 2018.

[10] S. Du, H. Guo and A. Simpson, "Self-Driving Car
Steering Angle Prediction Based on Image Recognition",
http://cs231n.stanford.edu/reports/2017/pdfs/626.pdf, 2017.

[11] C. J. C. H. Watkins. “Learning from delayed rewards”.
PhD thesis, University of Cambridge England, 1989.

