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Abstract- The challenge with self-driving cars is        
to create a model that converts sensors data (such as          
cameras or proximity sensors) into actions. This way        
the car can react to its changing environment and         
make the right decisions. In the literature, Neural        
Networks is the most promising technique used to        
parse these sensors data. A well trained and designed         
neural network can take the sensors values and output         
the right actions. In this paper, we introduce a Way to           
train Efficiently Neural Network with Genetic      
principle, called WENNG. Moreover, we propose a       
comparative study between all the variations of       
WENNG to highlight the best-performing ones. To       
evaluate our WENNG training variation, we      
implement two well known neural network      
algorithms: the FullyConnected one and the NEAT       
algorithm. Through extensive simulations, we     
demonstrate that the Natural Selection WENNG      
outperforms the Greedy WENNG at training the       
genetic neural networks with a low mutation rate.        
Finally, we show that an IMproved version of NEAT         
called IMNEAT, minimizes twice the number of       
generations to reach the maximum fitness value       
compared to the traditional NEAT algorithm. 
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I.  Introduction 
Nowadays, autonomous vehicles (AV) gain a great        

focus from civilians, automotive constructors and      
transportation stakeholders. Accordingly, AV, Internet of      
vehicles, and the connected smart cars will be the main          
actors of smart transportation system within smart cities.        
AV could be better at preventing accidents than humans,         
since they can react faster to disturbance and they can do           
precise evasive maneuvers. AVs make more reliable       
decisions which lead to faults avoidance that could cause         
accidents. Besides that, AVs will get better traffic flow         
regulation than humans because AV ride using proper        
traffic rules, making smooth and congestion free traffic.        
The AV basic model involves front-facing cameras, rear        
cameras, radar, digitally controlled sub-systems,     
long-range ultrasonic sensors located around the car and        
many sensors and actuators embedded within the vehicle        
as well as intra-vehicles and inter-vehicles networks [2].        

All these sensors will gather in real-time the required         
data concerning the vehicles environment which are       
fused into a learning network predicting the vehicle’s        
response. However, autonomous vehicle faces diverse      
challenges before its standardisation. In this context,       
Intelligence artificial is the key paradigm that will enable         
the researchers, engineers and developers to build safe        
AV. Therefore, a huge effort is required to find the better           
ways to make the machine learn to drive safely and          
efficiently. Now, the most reliable way to achieve        
artificial intelligence in computing is to use various        
known algorithms as artificial neural networks. Multiple       
challenges arise with those kind of algorithms. For        
example, in order to train the neural networks we need to           
simulate cars in an environment that is as close as          
possible to the real world in order to be able to transfer            
the algorithm to a real car when it is done learning.           
Another problem with this approach is that there are         
multiple variations of the artificial neural network       
algorithm each tested using different techniques. In our        
previous work, we proposed a platform called LAOP [3]         
to easily compare different neural network algorithms in        
the context of autonomous cars. Using our platform,        
scientists can collect comparative data between multiple       
neural network algorithms to drive cars. Note here that         
we are differencing the Artificial Neural Network (ANN)        
from the learning algorithm. The learning algorithm is        
the one that will perform the optimisation on the ANN          
(for example, the backpropagation algorithm is a learning        
algorithm). Using the LAOP platform, we compare       
different variation of a genetic learning algorithm that we         
called WENNG on two well known algorithms : NEAT         
[5] and FUlly COnnected Neural Network (FUCONN).  

 
Our contributions can be summarized as follows: (1)         

We present the global working of our Way to train          
Efficiently Neural Network with Genetic principle named       
WENNG and its implementation in the LAOP platform        
[4]; (2) We introduce the two variations of WENNG         
:Natural Selection named NS WENNG and GReeDy       
WENNG named GRD WENNG; (3) We implement two        
neural networks algorithms : NEAT and a FUCONN to         
evaluate the performance of WENNG and its       
variation;(4) We discuss our comparative study using all        
the WENNG variations to train NEAT and FUCONN        
respectively and (5) We demonstrate that the Natural        



 
  

Selection WENNG outperforms the GRD WENNG with       
a low mutation rate while the IMNEAT algorithm        
outperforms the known NEAT algorithm. 

Section II provides a brief overview of the related         
work and compares them to our proposed scheme        
WENNG. In section III, we briefly explain how our         
LAOP[4] platform works. In section IV, we present how         
we implemented some well known algorithms to test        
WENNG on it. Section V shows the simulations results.         
Finally, conclusions are drawn in Section VI. 

II. Related work 
Several schemes training neural networks have been        

proposed to handle self-driving cars challenge. To the        
best to our knowledge, these can be broadly classified in          
two categories: (a) supervised learning [6,7,10] and (b)        
reinforcement learning [1,5,8-9,11]. 

a. Neural networks trained with supervised     
learning 
Dean A. Pomerleau [7] was one of the first to use            

supervised learning in autonomous driving. He proposed       
to train a fully connected neural network to predict         
steering wheels angles depending on road images. As he         
did not have access to a dataset containing steering wheels          
angles, he trained his neural network in a simulated         
environment. The authors in [6,10] used a Convolutional        
Neural Network (CNN) to predict steering wheels angles        
from raw images with great success. They used a dataset          
from images and steering wheels to train their neural         
network. 

b.Neural Networks trained with reinforcement     
learning 

Reinforcement learning has made their proof in        
solving multiple optimization problems, notably in      
games. This technique was used by DeepMind [8] to beat          
the best go player in the world. It was also used by            
OpenAI [9] to learn a bot to play dota 2.  

There is a lot of techniques used to train neural          
networks such as Q-Learning [11] and its variants, but in          
this paper we concentrated ourselves on genetic       
reinforcement learning. In NEAT[5], the authors showed       
that a genetic algorithm can solve the pole-balancing        
problem with better results then the ones availables in         
that time. Recently, their research study, in [12], showed         
that genetic algorithms can be very performant even in         
hard optimization tasks.  

c. Using a genetic reinforcement learning: What       
is the advantage compared to both categories? 

To train the algorithms, in our paper, we use a genetic            
reinforcement technique that we called WENNG. The       
advantage of a reinforcement learning approaches      
[1,5,8-9,11] is that less data is required to train the          
network. Supervised technique [6-7, 10] needs to have a         
set of good outputs for each time the network is used. In            
our case, this means that for each step of the simulation,           
we would need to tell the network what it should be the            
output. The problem is that there can be multiple         
manoeuvers to get to the finishing line and forcing a          

predefined path may not be the best way to make it           
learns. We also want to explore what are the capabilities          
of a neural network without explicitly telling him what is          
the right path to take. A reinforcement learning approach         
only needs reward function that tells how the neural         
network is performing. With this information, it can        
favorise the best-performing ones and eventually find a        
good neural network.  

III. An overview of the improved LAOP 
platform enforced by new algorithms 

This section will briefly describe LAOP. We introduced         
a preliminary version of this platform in details in our          
previous work [3]. The source code of the new         
implementation of LAOP platform is available in [4].  
LAOP [3,4] is a platform made to compare and develop           

better artificial intelligence algorithms in the context of        
autonomous vehicles. It can simulate and train a neural         
network algorithm. It can then provide comparison data        
between the algorithms tested. This section is divided as         
following : we first describe how we implemented the car          
into the platform and then we describe how we divided          
the process of generations. 
 
  A. The car  

 

Figure.1. A car with its different parts. The sensors give          
information to the neural network that can dictates the         
values of the wheels. 

The cars navigate through a simulated environment.        
This environnement is composed of two parts : (1) walls          
and (2) a starting position. The starting position is the          
point where the cars will spawn at the start of the           
generation. The walls are lines that the car must avoid. If           
the car comes in contact with one of these, its state is            
changed to eliminated, and it can no longer move. 
A car is composed of three key parts : the sensors, the             

neural network and the wheels as shown in Figure.1. The          
sensors track information about the environment and       
transfer that data to the neural network. At the moment,          
only proximity sensors are implemented. They can tell        
the distance between the car and the walls surrounding it          
in a straight line. After receiving the data from the          
sensors, the neural network will do a calculation        
depending on its implementation and will assign a value         
to each of the two back wheels. The wheels then go at a             

  



 
  

certain speed depending on the values returned from the         
neural network. 

. B. The simulation 
At the launch of the platform, the user can configure the            

simulation and select which algorithms that are going to         
be simulated. The user can also set specific settings to          
each algorithm. Therefore, the user can compare multiple        
variation of the same algorithm to gain valuable insight.         
As shown in [4], our LAOP platform can be useful for           
example to know the effect that the car density has on the            
learning process of an algorithm.  
The simulation process can be described as follow: for          

each algorithm, a simulation batch is created; the        
simulation batch will simulate the same algorithm       
multiple time to reduce the error related to chance ; the           
simulation will play one generation after the other in         
order to make the cars learn. A generation contains a set           
of cars and it’s the process of simulating all the cars. At            
the beginning of the generation, the cars are spawned at          
the starting location. For each car, the value of the          
sensors are fed in the neural network to get the value that            
each wheel should go. The new position of the car is then            
computed. This iteration continues until one of those        
conditions are met : (1) all the cars are eliminated,          
meaning they all hit a wall or (2) the time limit specified            
in the simulation settings is reached (this parameter is set          
to 60 seconds in our scenarios). When the generation         
ends, the cars go through the training algorithm WENNG         
to hopefully optimize the neural networks of the next         
generation.  

III. WENNG, a Way to train Efficiently Neural         
Networks using Genetics 
  

Our WENNG scheme uses three phases to make the set           
of car learn: (1) the evaluation, (2) the selection and (3)           
the repopulation as shown in Figure.2. The evaluation is         
done at the end of each generation, and it is the process            
of assigning a value to each car depending on their          
performance during the simulation. The selection is the        
process of eliminating the worst car depending on their         
fitness value. The repopulation is the process of        
repopulating the set of cars. After these three phases, a          
new generation is created with this new set of cars.  

In the following part, we present two variations of          
WENNG : a Natural Selection Way of training        
Efficiently Neural Network using Genetics (NS      
WENNG) and a greedy WENNG (GRD WENNG). We        
will first present the way the cars are evaluated. This          
process is the same for the two algorithms. Then, we will           
present each of the algorithms independently. 

 

Figure. 2. The process of simulating consist of three phases: 
the evaluation, the selection and the repopulation. 

A. The fitness function  
During the simulation, we collect information about        

the cars. With this information a value is assigned to each           
car, called the fitness, that determines how good the car          
performed during the generation. Our implementation of       
the function that computes the fitness is the one displayed          
in (1).  

  xf = d +   (1) 

Where is the fitness of the car, is the maximum  f        d     
distance from the start the car went in pixels and x is the             
total distance traveled by the car, also in pixels. The          
reason why we chose this function over f=x is explained          
in [3]. 
B. Natural selection WENNG 

After the attribution of the fitnesses, NS WENNG         
uses a weighted random distribution algorithm to       
eliminate the worst performing cars. This distribution       
favorises the cars with the best fitness by giving them a           
better weight then the others. Depending on this weight,         
half the population is eliminated. With this method, even         
the best-performing cars still have a chance to be         
eliminated. This respect the principles of natural       
selection. Even a well adapt specie still has a chance to           
die. More details about the implementation of the        
weighted sum is available in [3] . 

 
After the elimination process, the algorithm must        

repopulate the missing cars for the next generation. Each         
neural network algorithm (like NEAT or FUCONN) must        
redefine a function called crossOver(). This function       
takes as inputs two neural network and returns one. The          
returned neural network must have similar properties then        
the two passed in parameters. NS WENNG then takes         
two random parents from the surviving set of cars and          
parse them into the function to create a new neural          
network. A new car with this newly created neural         
network will be put in the set. This will be done for each             
of the missing car in the set. Then mutations are applied           
randomly on the cars’s network.  

C. Greedy WENNG (GRD WENNG) 

The greedy WENNG algorithm uses a much simpler         
approach to select the cars. It kills 80% of the worst           

  



 
  

performing cars. Then, the algorithm puts the 10% best         
performing neural network in an array that will be kept          
for all the simulations. This array is used in the          
repopulation phase. 

To repopulate the set, GRD WENNG first creates a          
sub-array containing the 20 best cars of this array. Then,          
for each missing car, it picks 2 random cars in the           
sub-array and reproduce them with the crossOver()       
function to create new cars. All the newly generate cars          
are forced to be mutated. The 20% that stayed in the           
array isn’t mutated. 

 
IV. Proposed algorithms 

We implemented a few learning algorithms in the         
platform to compare them with each other. In this         
section, we will describe in better details how our         
algorithms are implemented. We propose two learning       
algorithms : a fully connected neural network with some         
genetic and the NEAT algorithm proposed by Kenneth O.         
Stanley and Risto Miikkulainen [5]. In this section, we         
will first present some background information about       
neural networks, and then we will present our        
implementations of these neural networks 

A. Background knowledge on neural networks 

A neural network is composed of at least two layers,           
the input and the output layer. Connections between        
neurons, called weights, are used to link a node to          
another. Each weight and neuron contains a value. The         
values in the input layer are attributed by the         
environnement. In this context, the number of neuron in         
the first layer are the number of sensors present in the           
car. Their values depend on the values of the sensors. To           
compute the value at a certain neuron we do a sum of all             
the multiplication between each pair of neuron and        
weight. Then we apply an activation function to the         
result. This function is shown in (Eq.2). And the         
activation function is shown in (Eq.3). By applying the         
summation function (3), we can calculate the values of         
each of the neurons, going layer per layer. To get the           
output of the network, we check the values of each          
neurons in the last layer. In our context, the output of the            
network is used to know the speed that each wheel should           
goes at. 

 

(2) 

 

(3) 

To define a neural network, we need two things: the           
topology (the number of layers and the number of         
neurons in each) and the value of the weights. This          
means that only these two parameters are needed to         
recreate the neural network, and thus the only parameters         
that affect the performance of a Neural Network. A         

random set of topology and weights is not going to          
perform well. Once trained, meaning finding the right        
weights and topology, a neural network will do a better          
prediction according to its inputs. The goal of our         
training algorithm is to find the best configuration with         
real-time generated data. 

B. The Fully Connected (FUCONN) Algorithm  
The FUCONN algorithm uses a neural network with a          

fixed topology, meaning that the number of layers and         
the number of neurons in each layer won't change as the           
simulation progress (Figure. 3). In the context of our         
platform, the input neurons each receives the value of one          
of the sensors. In our examples we use seven proximity          
sensors per cars meaning the neural network of the car          
has seven input nodes in the first layer. The two node in            
the last layer, after being calculated, correspond to the         
value that each wheels of the car should go. The number           
of hidden layers and the number of neurons in each one           
can be specified before launching the simulation. In our         
examples, we demonstrate the Fully Connected      
Algorithm with one hidden layer consisting of three        
neurons. 
To implement the neural network, we must have a way           

to encode the neural network. The only parameter that         
define the fully connected neural network are the        
weights, as the topology is fixed. We can then represent          
the neural network with an array containing all the values          
of all the weight. The size of this array stays the same            
during the simulation, because of the fixed topology. This         
representation comes handy because we can now change        
the Neural Network simply by altering the array. 

 

Figure 3. The topology of the FUCONN algorithm 

In order to improve the fully connected algorithm’s         
network the WENNG algorithm need to be able to         
produce a new FUCONN algorithms using two others; to         
redefine the crossOver() function. Therefore, the      
FUCONN algorithm needs to define what reproducing       
itself means. As the encoding of this algorithm is an array           
of weights, we need to find a way to merge the arrays of             
the two parents. The way NS WENNG does it is by           
randomly selecting the value of either one parent or the          
other at each position in the genotype. When the         
FUCONN is mutated, it picks a random weight and         
slightly change its value. 
 

C. The NEAT algorithm 
The fully connected algorithm has a fixed topology,         

meaning that it only searches solutions in its arrangement         

  



 
  

of weights. However, the NEAT algorithm has a different         
approach by making the topology of the network variable,         
and thus searching in a wider range of possibilities. This          
wider range can be useful to find solution that otherwise          
could be hidden. The NEAT algorithm starts with only         
one connection going from a random input neuron to a          
random output neuron.  

To be trained by the WENNG algorithms, it needs to           
define the crossOver() function. To do this, creates a new          
network with hidden neurons and connections from both        
of its parents. This function is explained in the traditional          
NEAT algorithm[5].  

One of the differences with the Fully Connected         
Algorithm is within the mutations possibilities. The       
FUCONN algorithm can only (1) randomly changes       
weights. The NEAT algorithm can also (2) add a neuron          
between two already connected neurons or (3) connect        
randomly two random. 

C. The Improved NEAT (IMNEAT) algorithm 

Figure 4. How the topology of the NEAT algorithm starts 

In our demonstrations, we compare the traditional        
NEAT algorithm with IMNEAT. The difference between       
IMNEAT and NEAT resides in the number of starting         
connections . Through extensive simulation, we found       
that starting with only one random connection was not         
the best way in the context of autonomous vehicles. We          
noticed that it was useless to have some sensors doing          
nothing at the beginning. In our context it is logical that           
every sensor impact the decision of the speed of the          
wheels. To improve the NEAT algorithm we added some         
connections when the network is created (see Figure.4).        
When IMNEAT starts, it has all its neuron connected. 

V. Simulations Results 
In this section, we conduct a simulation study using          

the new version of the LAOP platform shared in [4] to           
evaluate and compare the performance of our proposed        
scheme, NS WENNG and GRD WENNG, training       
NEAT and FUCONN. We then compare our improved        
version of NEAT against the traditional NEAT. We        
evaluate several performance metrics based on the fitness        
: 1) the best car’s fitness at each generation; 2) The           
average fitness at each generation 3) the rate at which the           
fitness increases as the generation increased and 4) the         
maximum fitness reached in the 20 generations. We recall         
that a generation is the process of simulating and then          
altering the set of cars. The fitness is a value assigned to            
each car at the end of each generation to determine how           
the car is performing.  

A. Simulation Congurations  
In the rst scenario (1), We ran extensive         

simulations and multiple variation of the WENNG       
algorithm with several parameters as shown in Table.I.  

Table I. Parameters of Scenario 1 simulation 
Parameter Value 

Number of simulations 5 

Number of generations 20 

Number of sensors 7 

Maximum generation time 60 seconds 

Car density 50 

In the second scenario (2), we run multiple         
simulation of the NEAT algorithm and the IMNEAT        
algorithm to find which one is performing better. All         
parameters for this scenario, except number of simulation        
stays the same. The number of simulation is set at 10. 

B. Results Analysis 
Scenario 1 : Variations of the WENNG algorithm 
We present the comparison between NS WENNG        

and GRD WENNG learning approaches on the NEAT        
algorithm and the FUCONN algorithm.  

Figure. 5. Comparison of the best performing cars of NS WENNG           
vs GRD WENNG at each generation on NEAT 

The Figure 5 represents a comparison of the best         
performing car at each generation using the NEAT        
algorithm. Here, we can see that the NS WENNG         
algorithm is overperforming the GRD WENNG on the        
first 12 generations. Passing the 15th generation, the NS         
WENNG algorithm starts to underperform. This is       
probably due to the fact that in the NS WENNG          
algorithm, all the cars (even the best-performing ones)        
have a chance to mutate. This is not the case in the GRD             
WENNG algorithm. If a good-performing car gets       
mutated, it has a chance to be less performant than before           
the mutation, thus resulting in a lost of performance. This          
is probably the reason why the blue line is unstable at the            
end.  

  



 
  

 

Figure. 6. The average fitness of NS WENNG vs. GRD WENNG 
at each generation on NEAT 

Figure.6 shows a comparison of the average fitness         
between two algorithms. The GRD algorithm      
overperforms the NS WENNG algorithm during the       
whole simulations. This is surprising, because the NS        
WENNG performed better then the GRD WENNG in all         
the other cases. We believe that the high mutations rate of           
NEAT are behind this behaviour.  

 

Figure 7. The best fitness at each generation between the GRD and 
NS WENNG using the FUCONN algorithm 

In Figure. 7, the natural selection algorithm        
performed better than the GRD algorithm. Overall, the        
NS WENNG algorithm was faster than the GRD        
algorithm to get to the maximum fitness. With the         
FUCONN algorithm, it seems that the learning of the NS          
WENNG was more stable compared to the NEAT        
algorithm. This is probably due that the NEAT algorithm         
is more affected by the mutation and the reproduction, as          
it can completely change its topology. In the FUCONN         
algorithm, the mutations and reproductions are only       
affecting the weight’s value. This means that if a good car           
is being mutated, it has less chance to completely change,          
and thus less chance of becoming less performant. We         
can conclude that the NS WENNG algorithm is better to          
train algorithms that are not affected a lot by mutations. 

Figure.8 shows a comparison of the average fitness         
and the generation where the Natural Selection WENNG        
able to keep the average fitness at a high level. In almost            
all the cases, the NS WENNG overperforms the GRD         
WENNG algorithm. 

 

Figure. 8. The average fitness at each generation using the 
FUCONN algorithm between the GRN and NS WENNG 

SENARIO 2: Comparison between our IMNEAT       
and the NEAT algorithm  

In this scenario, we compare the IMNEAT algorithm          
and the NEAT algorithm. The difference of the two         
algorithms resides in the number of starting connections.        
The IMNEAT algorithm starts with all nodes connected.        
The NEAT algorithm starts with one connection between        
two random nodes. We are comparing them on the same          
four criteria explained at the start of this section.  

 

Figure.9. The average fitness of IMNEAT vs. NEAT 

 

Figure.10. The best-performing cars of IMNEAT vs. NEAT 

As we can see in Figures 9 and 10, the IMNEAT            
algorithm is starting with a head start. At generation 1 of           
both the average and the maximum, the IMNEAT’s        
fitness is higher than in the NEAT’s one. As the          
generations progress, the NEAT algorithm catches the       
IMNEAT’s. But, this is caused by the fact that the max           
fitness (of ~1900) reached at generation 6 for the         
IMNEAT algorithm. The traditional NEAT algorithm      
gets to the maximum of ~1800 at generation 15. Our          
approach of pre-assigning connections makes IMNEAT      
twice as fast to react the maximum. 

In summary, the simulation results conrm that        
well-trained Neural Network with Genetic principle can       

  



 
  

efciently satisfy our goal of getting a car to run without           
hitting walls. 

VI. Conclusion and Future works 
In this paper, we have proposed two Ways of          

Efficiently train Neural Networks with Genetics      
(WENNG). Our first approach (NS WENNG) tries to        
follows the principles of natural selection by determining        
the likelihood of keeping a car alive by chance, thus          
keeping a part of the less-performing population that        
could have interesting traits later on. The GRD WENNG         
gets rid of the less performing population and tries to          
only reproduce the better performing ones. In most cases,         
the NS WENNG approach gives better results. Except in         
the case of the average study of the NEAT algorithm.          
This exception is probably due to the fact that mutations          
have a big impact on the NEAT’s best performing cars          
and that the selection algorithm mutates all the car by          
comparison with the GRD algorithm that only mutates        
the new cars.  

Furthermore, we have concluded from our       
performance study that the regular NEAT enforced with        
our heuristic needs less generations to be as performant as          
the traditional NEAT algorithm. The fact of pre        
connecting the neural network gives it a head start,         
because the traditional NEAT algorithm will need to get         
to this connected state anyways during its training.  
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