
@ International Symposium on Memory Management 2025 (ISMM’25)

Arborescent Garbage Collection
A Dynamic Graph Approach to Immediate Cycle Collection

Frédéric Lahaie-Bertrand, Léonard Oest O'Leary, Olivier Melançon,

Marc Feeley and Stefan Monnier

Collecting cycles immediately
Most existing technique either collect cyclic garbage or collect garbage
immediately, not both:

Tracing Reference Counting
• Can collect cycles but not immediately

• Ex: Mark-and-sweep, Stop-and-copy

• Can collect garbage immediately,
except cyclic structure

Here immediate means that the garbage is collected before any other
operation by the mutator.

Motivations
Immediate cycle collection is useful in applications such as:

• File-systems and object stores.

• The interoperability of a garbage collector with C++ or Rust.

• Reclamation of DOM objects in a browser.

• Precise measurement of the maximum amount of live heap data during a
program execution.

Our approach A C

B

E F

D

G

Given a reference graph between
objects in the heap

Our approach
Given a reference graph between
objects in the heap

A C

B

E F

D

GPart of the reference graph

Part of the spanning tree

The Garbage collection problem can
be formulated as finding a collection
of spanning trees.

Our approach
Given a reference graph between
objects in the heap

Our approach will be to maintain this
spanning forest at all times during the
execution of the program

A C

B

E F

D

G

The Garbage collection problem can
be formulated as finding a collection
of spanning trees.

Some definitions A C

B

E F

D

G

A Cand are uncollectable nodes (or roots)

Some definitions A C

B

E F

D

G

A Cand are uncollectable nodes (or roots)

denotes a parent/child relation

Some definitions A C

B

E F

D

G

A Cand are uncollectable nodes (or roots)

denotes a parent/child relation

denotes a coparent and cochild
relationship

Even Shiloach trees
The goal of Even Shiloach trees is to
maintain a minimal spanning forest.

The Arborescent Garbage Collector was
inspired by Even Shiloach trees.

0 0

1

2 2

1

2

Even Shiloach trees keep this distance
by adding a notion of rank.

Even Shiloach trees
The goal of Even Shiloach trees is to
maintain a minimal spanning forest.

The Arborescent Garbage Collector was
inspired by Even Shiloach trees.

Even Shiloach trees
However a minimal spanning forest is not needed to maintain reachability.

Even Shiloach Arborescent Garbage Collector

• Maintains a minimal spanning forest

• Ranks are strictly monotone

• Ranks are needed for the algorithm to
work

• Maintains a spanning forest

• Ranks must be increasing

• Ranks are only needed to ensure no
cycles are formed when optimizing

Even Shiloach trees
However a minimal spanning forest is not needed to maintain reachability.

Even Shiloach Arborescent Garbage Collector

• Maintains a minimal spanning tree

• Ranks are strictly incremental

• Ranks are needed for the algorithm to
work

• Maintains a spanning forest

• Ranks must be increasing

• Ranks ensure no cycles are formed
when optimizing

0 -1

5

10 8

6

10

The Arborescent Garbage
Collection Algorithm

0 0

1

2 2

1

2

3 3 3

1

Our goal is to maintain a spanning tree over:

• The addition of an edge

• The removal of an edge outside of the
spanning forest

• The removal of an edge inside of the
spanning forest

Addition of an edge0 0

1

2 2

1

2

3 3 3

1

Addition of an edge0 0

1

2 2

1

2

3 3 3

1

Addition of an edge0 0

1

2 2

1

2

3 3 3

1
We can simply add an edge that is not part

of the spanning tree.

Addition of an edge0 0

1

2 2

1

2

3 3 3

1
We can simply add an edge that is not part

of the spanning tree.

… still a spanning forest

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

Removal of an edge0 0

1

2 2

1

2

3 3 3

1
If the edge is not part of the spanning tree,

we can just remove it.

Removal of an edge0 0

1

2 2

1

2

3 3 3

1
If the edge is not part of the spanning tree,

we can just remove it.

… still a spanning forest

Removal of an edge0 0

1

2 2

1

2

3 3 3

1
If the edge is not part of the spanning tree,

we can just remove it.

… still a spanning forest

However, if the edge is part of the spanning
tree… its more complicated.

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

Removal of an edge0 0

1

2 2

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

Removal of an edge0 0

1

2 4

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

Removal of an edge0 0

1

2 4

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

(3) Collect: Remove all falling nodes.

Removal of an edge0 0

2 4

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

(3) Collect: Remove all falling nodes.

Removal of an edge0 0

2 4

1

2

3 3 3

1

If we want to remove an edge that is part of the
spanning tree, we use a 3-part algorithm

(1) Drop: Mark all falling and anchor nodes

(2) Catch: From anchors find all nodes that
can be caught and fix the spanning tree

(3) Collect: Remove all falling nodes.

… still a spanning forest

Can we use this in practice?NO
Its about 3 orders of magnitudes

slower than our baseline…

Now the question is, how to make it
faster?

First optimisation
Adoption

An adoption prevents a node from falling
in the drop phase.

It occurs when the falling node has a
coparent that has a smaller rank than it

0 0

1

2 2

1

2

3 3 3

1

0 0

1

2 2

1

2

3 3 3

1

First optimisation
Adoption

An adoption prevents a node from falling
in the drop phase.

It occurs when the falling node has a
coparent that has a smaller rank than it

0 0

1

2 2

1

2

3 3 3

1

First optimisation
Adoption

This node will fall

This is a coparent with a smaller
rank

An adoption prevents a node from falling
in the drop phase.

It occurs when the falling node has a
coparent that has a smaller rank than it

0 0

1

2 2

1

2

3 3 3

1

First optimisation
Adoption

An adoption prevents a node from falling
in the drop phase.

It occurs when the falling node has a
coparent that has a smaller rank than it

0 0

1

2 2

1

2

3 3 3

1

First optimisation
Adoption

…

It can prevent a lot of nodes from falling

An adoption prevents a node from falling
in the drop phase.

It occurs when the falling node has a
coparent that has a smaller rank than it

Second optimisation
Reranking

0

4

13

2

…

0

4

13

2

…

We wish that the rank was
smaller than 2

Second optimisation
Reranking

0

4

13

2

…

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

Second optimisation
Reranking

-1

1

10

2

…

This coparent can now adopt
the falling node

Second optimisation
Reranking

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

-1

1

10

2

…

Second optimisation
Reranking

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

-1

1

10

2

…

Second optimisation
Reranking

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

However, this can be risky as we need to traverse parents until:

• We find a root

• We remove enough gaps

• We find the original falling node

-1

1

10

2

…

Second optimisation
Reranking

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

We perform the reranking on the first few nodes
only.

In some cases, it is more efficient to reduce a
coparent’s rank than to traverse the subgraph.

However, this can be risky as we need to traverse parents until:

• We find a root

• We remove enough gaps

• We find the original falling node

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

0

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

0

We choose to initialize the rank with a
decreasing global counter.

It ensures that the newly created node can
adopt any nodes.

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

0

We choose to initialize the rank with a
decreasing global counter.

It ensures that the newly created node can
adopt any nodes.

-1

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

0

We choose to initialize the rank with a
decreasing global counter.

It ensures that the newly created node can
adopt any nodes.

-1

-2

Third optimisation
Choice of the initial rank

When creating a new object, we can choose it’s
rank.

0

We choose to initialize the rank with a
decreasing global counter.

It ensures that the newly created node can
adopt any nodes.

-1

-2

-3

The devil lies in the details
Some implementations details were omitted by lack of time.
How do we keep the coparent-cofriend relationship in memory?

There is a whole section about implementation in the paper :)

Benchmarks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ack
array1

boyer
browse

cpstak
ctak

deriv
destruc

diviter
divrec

earley
equal

fibc
fib gcbench

graphs

lattice
matrix

mazefun

maze
mperm

nboyer

nqueens

ntakl
paraffins

peval
primes

puzzle
quicksort

sboyer

scheme

string
sum

tak

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

Benchmark

4.
61

4.
58

4.
05

3.
13

4.
40 4.
53 4.

79

4.
76 5.

25

5.
04

3.
90 4.

14 4.
66

4.
27

4.
19

3.
76

4.
34

4.
18 4.
32 4.
40

3.
49

8.
49

4.
53

5.
10

8.
58

3.
92 4.
09

3.
50

5.
45

4.
29

3.
78

4.
77

4.
40

4.
32

Future work
More optimizations:
• better heuristics

• take advantage of specific common cases

Real world scenarios:
• interoperability with C++/Rust destructors

• object stores

More usage of other dynamic tree structures?

Conclusion
The Arborescent Garbage Collector collects cyclic structures immediately by
embedding a spanning tree into the reference graph.

We add a weak notion of ranks on objects, allowing the adoption and rerank
optimisation.

Our technique is ~4.5x slower compared to mark-and-sweep. Previous work
was prohibitive and unusable synchronously.

We believe immediate collection of all garbage can enable applications requiring
timely reclamation of resources.

Backup slides

Collecting cycles immediately
• CPython: Reference counting with occasional tracing (not immediate)

• Bacon and Raejan: Reference counting with deferred cycle collection to an
asynchronous background task (not immediate)

• Brownbridge and Picher: introduced mechanisms for maintaining a
spanning trees in a reference graph. (prohibitive)

• Brandt et al.: described an algorithm for repairing the spanning tree when a
reference is deleted, reclaiming unreachable objects in the process.
(prohibitive)

Contributions

• We propose a new algorithm that can collect cycles immediately without
the prohibitive slowdown of previous techniques.

Benchmarks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

ack
array1

boyer
browse

cpstak
ctak

deriv
destruc

diviter
divrec

earley
equal

fibc
fib gcbench

graphs

lattice
matrix

mazefun

maze
mperm

nboyer

nqueens

ntakl
paraffins

peval
primes

puzzle
quicksort

sboyer

scheme

string
sum

tak

Mark-and-SweepArborescent

Re
la

tiv
e

C
PU

 C
yc

le
s

drop
mutator

collect
catch

other
adopt

collector
mutator

